Ca2+/calmodulin–dependent kinase II (CaMKII) has been implicated in cardiac hypertrophy and heart failure. We generated mice in which the predominant cardiac isoform, CaMKIIδ, was genetically deleted (KO mice), and found that these mice showed no gross baseline changes in ventricular structure or function. In WT and KO mice, transverse aortic constriction (TAC) induced comparable increases in relative heart weight, cell size, HDAC5 phosphorylation, and hypertrophic gene expression. Strikingly, while KO mice showed preserved hypertrophy after 6-week TAC, CaMKIIδ deficiency significantly ameliorated phenotypic changes associated with the transition to heart failure, such as chamber dilation, ventricular dysfunction, lung edema, cardiac fibrosis, and apoptosis. The ratio of IP3R2 to ryanodine receptor 2 (RyR2) and the fraction of RyR2 phosphorylated at the CaMKII site increased significantly during development of heart failure in WT mice, but not KO mice, and this was associated with enhanced Ca2+ spark frequency only in WT mice. We suggest that CaMKIIδ contributes to cardiac decompensation by enhancing RyR2-mediated sarcoplasmic reticulum Ca2+ leak and that attenuating CaMKIIδ activation can limit the progression to heart failure.
Haiyun Ling, Tong Zhang, Laetitia Pereira, Christopher Kable Means, Hongqiang Cheng, Yusu Gu, Nancy D. Dalton, Kirk L. Peterson, Ju Chen, Donald Bers, Joan Heller Brown
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 830 | 172 |
110 | 59 | |
Figure | 361 | 15 |
Table | 124 | 0 |
Citation downloads | 61 | 0 |
Totals | 1,486 | 246 |
Total Views | 1,732 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.