Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Novel epitope begets a novel pathway in type 1 diabetes progression
Jeffrey A. Frelinger
Jeffrey A. Frelinger
Published September 18, 2008
Citation Information: J Clin Invest. 2008;118(10):3268-3271. https://doi.org/10.1172/JCI37125.
View: Text | PDF
Commentary

Novel epitope begets a novel pathway in type 1 diabetes progression

  • Text
  • PDF
Abstract

While CD8+ T cells are critical to diabetogenesis in NOD mice, evidence of their involvement in human type 1 diabetes (T1D) has been circumstantial. The existence of CD8+ T cells specific for β cell peptides has been demonstrated, but functional data regarding the role of these cells in T1D have been lacking. In this issue of the JCI, Skowera et al. describe an unusual self-peptide epitope derived from the leader sequence of preproinsulin (PPI) and show that 50% of HLA-A2+ patients with new-onset T1D possessed circulating CD8+ T cells specific for this epitope, suggesting that PPI plays a critical role in the development of T1D (see the related article beginning on page 3390). They also report that β cells upregulate PPI expression in the presence of high glucose levels, rendering these cells more susceptible to lysis and potentially accelerating disease. This suggests that interventions aimed at decreasing the PPI-specific CD8+ T cell response early after T1D diagnosis may be efficacious in ameliorating the disease process.

Authors

Jeffrey A. Frelinger

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 159 11
PDF 52 7
Figure 49 1
Citation downloads 44 0
Totals 304 19
Total Views 323

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts