Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury
Franco R. D’Alessio, … , John F. McDyer, Landon S. King
Franco R. D’Alessio, … , John F. McDyer, Landon S. King
Published September 21, 2009
Citation Information: J Clin Invest. 2009;119(10):2898-2913. https://doi.org/10.1172/JCI36498.
View: Text | PDF
Research Article Article has an altmetric score of 13

CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury

  • Text
  • PDF
Abstract

Acute lung injury (ALI) is characterized by rapid alveolar injury, inflammation, cytokine induction, and neutrophil accumulation. Although early events in the pathogenesis of ALI have been defined, the mechanisms underlying resolution are unknown. As a model of ALI, we administered intratracheal (i.t.) LPS to mice and observed peak lung injury 4 days after the challenge, with resolution by day 10. Numbers of alveolar lymphocytes increased as injury resolved. To examine the role of lymphocytes in this response, lymphocyte-deficient Rag-1–/– and C57BL/6 WT mice were exposed to i.t. LPS. The extent of injury was similar between the groups of mice through day 4, but recovery was markedly impaired in the Rag-1–/– mice. Adoptive transfer studies revealed that infusion of CD4+CD25+Foxp3+ Tregs as late as 24 hours after i.t. LPS normalized resolution in Rag-1–/– mice. Similarly, Treg depletion in WT mice delayed recovery. Treg transfer into i.t. LPS–exposed Rag-1–/– mice also corrected the elevated levels of alveolar proinflammatory cytokines and increased the diminished levels of alveolar TGF-β and neutrophil apoptosis. Mechanistically, Treg-mediated resolution of lung injury was abrogated by TGF-β inhibition. Moreover, BAL of patients with ALI revealed dynamic changes in CD3+CD4+CD25hiCD127loFoxp3+ cells. These results indicate that Tregs modify innate immune responses during resolution of lung injury and suggest potential targets for treating ALI, for which there are no specific therapies currently available.

Authors

Franco R. D’Alessio, Kenji Tsushima, Neil R. Aggarwal, Erin E. West, Matthew H. Willett, Martin F. Britos, Matthew R. Pipeling, Roy G. Brower, Rubin M. Tuder, John F. McDyer, Landon S. King

×

Figure 2

Alveolar CD4+CD25+Foxp3+ Tregs increase after injury with i.

Options: View larger image (or click on image) Download as PowerPoint
Alveolar CD4+CD25+Foxp3+ Tregs increase after injury with i.
   
. LPS. ...
. LPS. (A) Representative lung sections were stained with H&E (n = 10 per group) to reveal morphologic changes on day 10 after i.t. LPS in Rag-1–/– mice. Animals received AT via tail vein injection of PBS sham treatment, 10 × 106 WT CD4-depleted splenocytes, or WT splenocytes from whole spleen. Original magnification, ×40. (B) Mean histopathological lung injury scores by day 10 after i.t. LPS (n = 6–8 animals per group). (C) BAL cells from WT animals were analyzed by flow cytometry for the presence of CD4+CD25+ surface staining and intracellular transcription factor Foxp3+ at baseline and after injury; corresponding populations in the spleen were used for comparison. (D) Absolute Treg numbers at baseline and after injury. *P < 0.05 versus control. (E) Surface staining for FR4 was determined in CD4+CD25+ cells from spleen and BAL after LPS. (F) Relative expression of Foxp3 and FR4 in CD4+CD25+ cells (left axis), as well as CD25+ expression in the CD4+ pool (right axis), isolated from the BAL at baseline and after i.t. LPS. Numbers within plots in C and E denote the percentage of cells in the respective quadrants.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Referenced in 4 patents
Highlighted by 1 platforms
268 readers on Mendeley
See more details