Parkinson disease (PD) is characterized by dopaminergic neurodegeneration and intracellular inclusions of α-synuclein amyloid fibers, which are stable and difficult to dissolve. Whether inclusions are neuroprotective or pathological remains controversial, because prefibrillar oligomers may be more toxic than amyloid inclusions. Thus, whether therapies should target inclusions, preamyloid oligomers, or both is a critically important issue. In yeast, the protein-remodeling factor Hsp104 cooperates with Hsp70 and Hsp40 to dissolve and reactivate aggregated proteins. Metazoans, however, have no Hsp104 ortholog. Here we introduced Hsp104 into a rat PD model. Remarkably, Hsp104 reduced formation of phosphorylated α-synuclein inclusions and prevented nigrostriatal dopaminergic neurodegeneration induced by PD-linked α-synuclein (A30P). An in vitro assay employing pure proteins revealed that Hsp104 prevented fibrillization of α-synuclein and PD-linked variants (A30P, A53T, E46K). Hsp104 coupled ATP hydrolysis to the disassembly of preamyloid oligomers and amyloid fibers composed of α-synuclein. Furthermore, the mammalian Hsp70 and Hsp40 chaperones, Hsc70 and Hdj2, enhanced α-synuclein fiber disassembly by Hsp104. Hsp104 likely protects dopaminergic neurons by antagonizing toxic α-synuclein assemblies and might have therapeutic potential for PD and other neurodegenerative amyloidoses.
Christophe Lo Bianco, James Shorter, Etienne Régulier, Hilal Lashuel, Takeshi Iwatsubo, Susan Lindquist, Patrick Aebischer
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 381 | 73 |
81 | 28 | |
Figure | 285 | 3 |
Citation downloads | 52 | 0 |
Totals | 799 | 104 |
Total Views | 903 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.