Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Molecular processes that handle — and mishandle — dietary lipids
Kevin Jon Williams
Kevin Jon Williams
Published October 1, 2008
Citation Information: J Clin Invest. 2008;118(10):3247-3259. https://doi.org/10.1172/JCI35206.
View: Text | PDF
Science in Medicine Article has an altmetric score of 6

Molecular processes that handle — and mishandle — dietary lipids

  • Text
  • PDF
Abstract

Overconsumption of lipid-rich diets, in conjunction with physical inactivity, disables and kills staggering numbers of people worldwide. Recent advances in our molecular understanding of cholesterol and triglyceride transport from the small intestine to the rest of the body provide a detailed picture of the fed/fasted and active/sedentary states. Key surprises include the unexpected nature of many pivotal molecular mediators, as well as their dysregulation — but possible reversibility — in obesity, diabetes, inactivity, and related conditions. These mechanistic insights provide new opportunities to correct dyslipoproteinemia, accelerated atherosclerosis, insulin resistance, and other deadly sequelae of overnutrition and underexertion.

Authors

Kevin Jon Williams

×

Figure 3

Integrated model of CM binding and hydrolysis on peripheral capillary endothelium.

Options: View larger image (or click on image) Download as PowerPoint
Integrated model of CM binding and hydrolysis on peripheral capillary en...
Adipose tissue and striated muscle each synthesize LpL, regulated by the fasted/fed and active/sedentary metabolic states. HSPGs on the surfaces of these cells capture and internalize LpL for degradation. LpL that escapes degradation will be picked up by HSPGs and VLDL receptors on the basal surface of overlying endothelial cells for transcytosis to the luminal surface of capillaries (orange arrows). Heparan sulfate side-chains of syndecan and glypican are denoted by chains of small spheres. The major HSPGs of endothelium, syndecans and glypicans, move into detergent-insoluble membrane microdomains (rafts) rich in caveolin-1 (CAV1) upon clustering. On the apical surface, they encounter GPIHBP1, which should also move into rafts upon clustering. The highly negatively charged N-terminal domain of GPIHBP1 binds LpL with approximately 10-fold greater affinity than do endothelial HSPGs. Thus, after transcytosis, LpL should be torn away from syndecans and glypicans onto GPIHBP1 (pink arrows). Dimers of GPIHBP1 bind LpL and CMs, thereby providing a platform for CM docking and triglyceride lipolysis. These processes are facilitated by apoC-II and apoA-V. Lipolysis generates NEFAs that are transported by another raft molecule, CD36, across the endothelium and into adipocytes for energy storage (blue arrows) or into striated myocytes for combustion (green arrows). After hydrolysis of CM triglycerides, the endothelium releases apoB48 remnant lipoproteins that are rich in LpL, apoE, and cholesteryl ester back into the circulation (red arrow). Under normal circumstances, these remnant particles undergo safe, swift uptake by the liver.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
Referenced in 1 Wikipedia pages
82 readers on Mendeley
1 readers on CiteULike
See more details