Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy.
G Choukroun, … , A Rosenzweig, T Force
G Choukroun, … , A Rosenzweig, T Force
Published October 1, 1998
Citation Information: J Clin Invest. 1998;102(7):1311-1320. https://doi.org/10.1172/JCI3512.
View: Text | PDF
Research Article

Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy.

  • Text
  • PDF
Abstract

The signal transduction pathways governing the hypertrophic response of cardiomyocytes are not well defined. Constitutive activation of the stress-activated protein kinase (SAPK) family of mitogen-activated protein (MAP) kinases or another stress-response MAP kinase, p38, by overexpression of activated mutants of various components of the pathways is sufficient to induce a hypertrophic response in cardiomyocytes, but it is not clear what role these pathways play in the response to physiologically relevant hypertrophic stimuli. To determine the role of the SAPKs in the hypertrophic response, we used adenovirus-mediated gene transfer of SAPK/ERK kinase-1 (KR) [SEK-1(KR)], a dominant inhibitory mutant of SEK-1, the immediate upstream activator of the SAPKs, to block signal transmission down the SAPK pathway in response to the potent hypertrophic agent, endothelin-1 (ET-1). SEK-1(KR) completely inhibited ET-1-induced SAPK activation without affecting activation of the other MAP kinases implicated in the hypertrophic response, p38 and extracellular signal-regulated protein kinases (ERK)-1/ERK-2. Expression of SEK-1(KR) markedly inhibited the ET-1-induced increase in protein synthesis. In contrast, the MAPK/ERK kinase inhibitor, PD98059, which blocks ERK activation, and the p38 inhibitor, SB203580, had no effect on ET-1-induced protein synthesis. ET-1 also induced a significant increase in atrial natriuretic factor mRNA expression as well as in the percentage of cells with highly organized sarcomeres, responses which were also blocked by expression of SEK-1(KR). In summary, inhibiting activation of the SAPK pathway abrogated the hypertrophic response to ET-1. These data are the first demonstration that the SAPKs are necessary for the development of agonist-induced cardiomyocyte hypertrophy, and suggest that in response to ET-1, they transduce critical signals governing the hypertrophic response.

Authors

G Choukroun, R Hajjar, J M Kyriakis, J V Bonventre, A Rosenzweig, T Force

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 337 16
PDF 77 25
Citation downloads 75 0
Totals 489 41
Total Views 530
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts