A priori knowledge of spatial and temporal changes in partial pressure of oxygen (oxygenation; pO2) in solid tumors, a key prognostic factor in cancer treatment outcome, could greatly improve treatment planning in radiotherapy and chemotherapy. Pulsed electron paramagnetic resonance imaging (EPRI) provides quantitative 3D maps of tissue pO2 in living objects. In this study, we implemented an EPRI set-up that could acquire pO2 maps in almost real time for 2D and in minutes for 3D. We also designed a combined EPRI and MRI system that enabled generation of pO2 maps with anatomic guidance. Using EPRI and an air/carbogen (95% O2 plus 5% CO2) breathing cycle, we visualized perfusion-limited hypoxia in murine tumors. The relationship between tumor blood perfusion and pO2 status was examined, and it was found that significant hypoxia existed even in regions that exhibited blood flow. In addition, high levels of lactate were identified even in normoxic tumor regions, suggesting the predominance of aerobic glycolysis in murine tumors. This report presents a rapid, noninvasive method to obtain quantitative maps of pO2 in tumors, reported with anatomy, with precision. In addition, this method may also be useful for studying the relationship between pO2 status and tumor-specific phenotypes such as aerobic glycolysis.
Shingo Matsumoto, Fuminori Hyodo, Sankaran Subramanian, Nallathamby Devasahayam, Jeeva Munasinghe, Emi Hyodo, Chandramouli Gadisetti, John A. Cook, James B. Mitchell, Murali C. Krishna
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 401 | 57 |
86 | 31 | |
Figure | 271 | 2 |
Citation downloads | 61 | 0 |
Totals | 819 | 90 |
Total Views | 909 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.