The International HapMap Project was designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases. This expectation has been amply fulfilled with just the initial output of genome-wide association studies, identifying nearly 100 loci for nearly 40 common diseases and traits. These associations provided new insights into pathophysiology, suggesting previously unsuspected etiologic pathways for common diseases that will be of use in identifying new therapeutic targets and developing targeted interventions based on genetically defined risk. In addition, HapMap-based discoveries have shed new light on the impact of evolutionary pressures on the human genome, suggesting multiple loci important for adapting to disease-causing pathogens and new environments. In this review we examine the origin, development, and current status of the HapMap; its prospects for continued evolution; and its current and potential future impact on biomedical science.
Teri A. Manolio, Lisa D. Brooks, Francis S. Collins
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,245 | 281 |
147 | 45 | |
Figure | 411 | 27 |
Table | 476 | 0 |
Supplemental data | 159 | 15 |
Citation downloads | 66 | 0 |
Totals | 2,504 | 368 |
Total Views | 2,872 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.