The marked disruption of the homeostasis of a physiological system, be it a cell, tissue, organ, or whole organism, is more commonly known as stress. In many ways, aging can be considered the ultimate stress. However, physiological systems are constantly exposed to more acute stresses. Advances in our understanding of the molecular response of several physiological systems to both physiologic and pathologic stress is discussed in this Review Series. It is hoped that such understanding will facilitate the development of approaches to ameliorate some of the limitations these stresses place on individuals. However, as pointed out in many of the articles, much remains to be learned before such approaches can be envisioned.
Andrew R. Marks
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 248 | 78 |
150 | 21 | |
Citation downloads | 78 | 0 |
Totals | 476 | 99 |
Total Views | 575 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.