Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire
Maureen A. Su, … , B. Matija Peterlin, Mark S. Anderson
Maureen A. Su, … , B. Matija Peterlin, Mark S. Anderson
Published April 15, 2008
Citation Information: J Clin Invest. 2008;118(5):1712-1726. https://doi.org/10.1172/JCI34523.
View: Text | PDF
Research Article Autoimmunity Article has an altmetric score of 1

Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire

  • Text
  • PDF
Abstract

Homozygous loss-of-function mutations in AIRE cause autoimmune polyglandular syndrome type 1 (APS 1), which manifests in a classic triad of hypoparathyroidism, adrenal insufficiency, and candidiasis. Interestingly, a kindred with a specific G228W AIRE variant presented with an autosomal dominant autoimmune phenotype distinct from APS 1. We utilized a novel G228W-knockin mouse model to show that this variant acted in a dominant-negative manner to cause a unique autoimmunity syndrome. In addition, the expression of a large number of Aire-regulated thymic antigens was partially inhibited in these animals, demonstrating the importance of quantitative changes in thymic antigen expression in determining organ-specific autoimmunity. Furthermore, the dominant-negative effect of the G228W variant was exerted through recruitment of WT Aire away from active sites of transcription in the nucleus of medullary thymic epithelial cells in vivo. Together, these results may demonstrate a mechanism by which autoimmune predisposition to phenotypes distinct from APS 1 can be mediated in a dominant-negative fashion by Aire.

Authors

Maureen A. Su, Karen Giang, Kristina Žumer, Huimin Jiang, Irena Oven, John L. Rinn, Jason J. DeVoss, Kellsey P.A. Johannes, Wen Lu, James Gardner, Angela Chang, Paula Bubulya, Howard Y. Chang, B. Matija Peterlin, Mark S. Anderson

×

Figure 2

AireGW/+ mice (mixed C57BL/6-129 background) develop spontaneous autoimmune disease that is thymus dependent.

Options: View larger image (or click on image) Download as PowerPoint

AireGW/+ mice (mixed C57BL/6-129 background) develop spontaneous autoim...
(A) Representative H&E-stained sections of lacrimal (top row) and salivary glands (bottom row) in Aire+/+ (left column) and AireGW/+ (right column) mice at 20 weeks of age. Arrows indicate areas of lymphocytic infiltration seen in AireGW/+ mice. Images were taken at ×20 magnification. (B) Infiltration scores for lacrimal gland in bone marrow chimeras aged 10 weeks after bone marrow transplantation. The genotypes of the bone marrow recipients (either Aire+/+ or AireGW/+) and donors (either Aire+/+ or AireGW/+) are shown for each cohort. Bars represent average infiltrate score for each group. *P < 0.003 between Aire+/+ recipients and AireGW/+ recipients. Each circle represents an individual mouse. (C) Infiltration scores for salivary gland of thymic transplants into nude C57BL/6 mice aged 12 weeks after transplantation. The genotypes of thymic donors (either Aire+/+ or AireGW/+) are shown. Bars represent average infiltrate score for each group. *P = 0.016 between Aire+/+ and AireGW/+ thymic donors. Each circle represents an individual mouse.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Highlighted by 1 platforms
97 readers on Mendeley
See more details