Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells
Godwin Nchinda, … , Klaus Überla, Ralph M. Steinman
Godwin Nchinda, … , Klaus Überla, Ralph M. Steinman
Published March 6, 2008
Citation Information: J Clin Invest. 2008;118(4):1427-1436. https://doi.org/10.1172/JCI34224.
View: Text | PDF
Research Article Immunology Article has an altmetric score of 10

The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells

  • Text
  • PDF
Abstract

DNA vaccines promote an immune response by providing antigen-encoding DNA to the recipient, but the efficacy of such vaccines needs improving. Many approaches have considerable potential but currently induce relatively weak immune responses despite multiple high doses of DNA vaccine. Here, we asked whether targeting vaccine antigens to DCs would increase the immunity and protection that result from DNA vaccines. To determine this, we generated a DNA vaccine encoding a fusion protein comprised of the vaccine antigen and a single-chain Fv antibody (scFv) specific for the DC-restricted antigen-uptake receptor DEC205. Following vaccination of mice, the vaccine antigen was expressed selectively by DCs, which were required for the increased efficacy of MHC class I and MHC class II antigen presentation relative to a control scFv DNA vaccine. In addition, a DNA vaccine encoding an HIV gag p41–scFv DEC205 fusion protein induced 10-fold higher antibody levels and increased numbers of IFN-γ–producing CD4+ and CD8+ T cells. After a single i.m. injection of the DNA vaccine encoding an HIV gag p41–scFv DEC205 fusion protein, mice were protected from an airway challenge with a recombinant vaccinia virus expressing the HIV gag p41, even with 1% of the dose of nontargeted DNA vaccine. The efficacy of DNA vaccines therefore may be enhanced by inclusion of sequences such as single-chain antibodies to target the antigen to DCs.

Authors

Godwin Nchinda, Janelle Kuroiwa, Margarita Oks, Christine Trumpfheller, Chae Gyu Park, Yaoxing Huang, Drew Hannaman, Sarah J. Schlesinger, Olga Mizenina, Michel C. Nussenzweig, Klaus Überla, Ralph M. Steinman

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 708 84
PDF 78 32
Figure 223 11
Supplemental data 45 1
Citation downloads 83 0
Totals 1,137 128
Total Views 1,265
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 14 patents
Highlighted by 1 platforms
122 readers on Mendeley
See more details