Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
HOXA11 is critical for development and maintenance of uterosacral ligaments and deficient in pelvic prolapse
Kathleen A. Connell, … , Richard Bercik, Hugh S. Taylor
Kathleen A. Connell, … , Richard Bercik, Hugh S. Taylor
Published February 14, 2008
Citation Information: J Clin Invest. 2008;118(3):1050-1055. https://doi.org/10.1172/JCI34193.
View: Text | PDF
Research Article Reproductive biology Article has an altmetric score of 1

HOXA11 is critical for development and maintenance of uterosacral ligaments and deficient in pelvic prolapse

  • Text
  • PDF
Abstract

Pelvic organ prolapse (POP) is a common, debilitating disorder affecting millions of women. Uterosacral ligaments (USLs) are the main supportive structures of the uterus and vagina and are often attenuated in women with POP. Although the mechanical strength of USLs is known to be dependent on collagen synthesis and catabolism and the degradation protein MMP2 has been implicated in POP, the molecular mechanisms involved in the development of POP are currently unknown. Homeobox (HOX) genes are transcriptional regulators that orchestrate embryonic development of the urogenital tract. We demonstrated here that HOXA11 was essential for organogenesis of the USL by showing that USLs were absent in Hoxa11-null mice. We compared expression of HOXA11, collagen type I, collagen type III, MMP2, and MMP9 in USLs of women with and without POP. Expression of HOXA11 and both collagens was dramatically decreased while MMP2 was increased in women with POP. Constitutive expression of Hoxa11 in murine fibroblasts resulted in significantly increased expression of collagen type III and decreased expression of MMP2. These results identified HOXA11 as an essential gene for the development of the USL and suggested that women with POP might have weakened connective tissue due to changes in a signaling pathway involving HOXA11, collagen type III, and MMP2.

Authors

Kathleen A. Connell, Marsha K. Guess, Heidi Chen, Vaagn Andikyan, Richard Bercik, Hugh S. Taylor

×
Options: View larger image (or click on image) Download as PowerPoint
mRNA expression of collagens and MMPs in USLs from women with POP

mRNA expression of collagens and MMPs in USLs from women with POP


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

On 1 Facebook pages
57 readers on Mendeley
See more details