Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

OX40-OX40L interactions: a promising therapeutic target for allergic diseases?
Yui-Hsi Wang, Yong-Jun Liu
Yui-Hsi Wang, Yong-Jun Liu
Published December 3, 2007
Citation Information: J Clin Invest. 2007;117(12):3655-3657. https://doi.org/10.1172/JCI34182.
View: Text | PDF
Commentary Article has an altmetric score of 3

OX40-OX40L interactions: a promising therapeutic target for allergic diseases?

  • Text
  • PDF
Abstract

Recent advances in understanding the cellular and molecular mechanisms of atopy have shed light on potential targets for the development of new therapies for allergic diseases. In this issue of the JCI, Seshasayee et al. provide direct in vivo evidence that OX40 has critical roles in allergic inflammation mediated by thymic stromal lymphopoietin (TSLP) (see the related article beginning on page 3868). Blockade of interactions between OX40 on Th2 cells and OX40 ligand (OX40L) on TSLP-activated DCs using an OX40L-specific monoclonal antibody, inhibited Th2 cell–mediated immune responses in both mouse and nonhuman primate models of allergic inflammation. The results point to potential therapeutic approaches to targeting the cellular and molecular mechanism underlying TSLP-mediated allergic inflammation.

Authors

Yui-Hsi Wang, Yong-Jun Liu

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 517 243
PDF 91 47
Figure 136 0
Citation downloads 75 0
Totals 819 290
Total Views 1,109
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
39 readers on Mendeley
See more details