Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy
Jo C. Bruusgaard, Kristian Gundersen
Jo C. Bruusgaard, Kristian Gundersen
Published March 3, 2008
Citation Information: J Clin Invest. 2008;118(4):1450-1457. https://doi.org/10.1172/JCI34022.
View: Text | PDF
Research Article Muscle biology

In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy

  • Text
  • PDF
Abstract

Numerous studies have suggested that muscle atrophy is accompanied by apoptotic loss of myonuclei and therefore recovery would require replenishment by muscle stem cells. We used in vivo time-lapse microscopy to observe the loss and replenishment of myonuclei in murine muscle fibers following induced muscle atrophy. To our surprise, imaging of single fibers for up to 28 days did not support the concept of nuclear loss during atrophy. Muscles were inactivated by denervation, nerve impulse block, or mechanical unloading. Nuclei were stained in vivo either acutely by intracellular injection of fluorescent oligonucleotides or in time-lapse studies after transfection with a plasmid encoding GFP with a nuclear localization signal. We observed no loss of myonuclei in fast- or slow-twitch muscle fibers despite a greater than 50% reduction in fiber cross-sectional area. TUNEL labeling of fragmented DNA on histological sections revealed high levels of apoptotic nuclei in inactive muscles. However, when costained for laminin and dystrophin, virtually none of the TUNEL-positive nuclei could be classified as myonuclei; apoptosis was confined to stromal and satellite cells. We conclude that disuse atrophy is not a degenerative process, but is rather a change in the balance between protein synthesis and proteolysis in a permanent cell syncytium.

Authors

Jo C. Bruusgaard, Kristian Gundersen

×

Figure 6

Apoptosis in nuclei identified as myonuclei was extremely rare.

Options: View larger image (or click on image) Download as PowerPoint
Quantification from cryosections stained for dystrophin of number of myo...
(A–C) Sections triple-stained with antibodies against dystrophin (red), TUNEL (green), and Hoechst dye 33342 (blue). Myonuclei (m) or nuclei that are either satellite or stromal cells (s) are indicated. A TUNEL-positive nucleus outside the dystrophin staining, i.e., a stromal or satellite cell, is indicated in A (arrow). Scale bar: 25 μm. One of the only 4 apoptotic nuclei in the present study that appeared to be a myonucleus is illustrated at the same magnification in B (arrowhead), with the framed area at higher magnification shown in C (scale bar: 10 μm). (D) Percentage of TUNEL-positive myonuclei after denervation. The symbols for EDL were shifted slightly sideways for clarity. Means ± SEM; n = 6–10 sections.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts