In this issue of the JCI, Morioka et al. report on mice with a whole-pancreas knockout of the leptin receptor that exhibit improved glucose tolerance due to enhanced insulin secretion (see the related article beginning on page 2860). At first glance, their findings are very different from those reported in another recent study in which β cell–specific and hypothalamic knockout of the same gene caused obesity and impaired β cell function. The differences, which are understandable when one considers the body weights of the animals studied, provide new insight into the links among insulin, leptin action, and β cell function.
Kevin D. Niswender, Mark A. Magnuson
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 417 | 50 |
85 | 20 | |
Figure | 204 | 3 |
Citation downloads | 61 | 0 |
Totals | 767 | 73 |
Total Views | 840 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.