Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Overstaying their welcome: defective CX3CR1 microglia eyed in macular degeneration
Jing Chen, … , Kip M. Connor, Lois E.H. Smith
Jing Chen, … , Kip M. Connor, Lois E.H. Smith
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):2758-2762. https://doi.org/10.1172/JCI33513.
View: Text | PDF
Commentary Article has an altmetric score of 3

Overstaying their welcome: defective CX3CR1 microglia eyed in macular degeneration

  • Text
  • PDF
Abstract

Age-related macular degeneration (AMD), the most common cause of blindness in the elderly, is characterized by degeneration of the macula and can lead to loss of fine color vision. Alterations in inflammatory and immune system pathways, which arise from genetic differences, predispose individuals to AMD. Yet the mechanism of disease progression with respect to inflammation is not fully understood. In this issue of the JCI, the study by Combadière and colleagues shows that CX3C chemokine receptor 1–deficient (CX3CR1-deficient) mice have abnormal microglia that accumulate beneath the retina and contribute to the progression of AMD (see the related article beginning on page 2920).

Authors

Jing Chen, Kip M. Connor, Lois E.H. Smith

×

Figure 2

Proposed role of CX3CR1 and microglia in AMD.

Options: View larger image (or click on image) Download as PowerPoint
Proposed role of CX3CR1 and microglia in AMD.
(A) In the normal retina, ...
(A) In the normal retina, rod and cone photoreceptor outer segments are composed of thousands of photopigment-containing membrane discs that are continuously shed from the tips of the cells and recycled. The discarded discs are removed by RPE phagocytosis and reprocessed. (B) Additionally, microglia expressing CX3CR1 phagocytize cellular debris caused by daily insults (such as aging and cellular stress) and help maintain a healthy eye. (C) AMD resulting from loss of CX3CR1 expression is initiated by the same daily insults. However, as reported by Combadière et al. (6), when microglia lacking CX3CR1 are recruited to the area of damage they remain there, in part because of abnormal migration. CX3CR1-deficient microglia are proinflammatory (versus antiinflammatory CX3CR1-replete microglia; ref. 16) and recruit other proinflammatory cells. This response exacerbates the cellular damage that occurs with normal degeneration. (D) The increased accumulation of proinflammatory, CX3CR1-negative (16) microglia in the subretinal space appears to add to the formation of drusen (6), which contribute to loss of RPE function and photoreceptor degeneration (dry AMD). (E) Finally, as drusen build up and separate the RPE from the choroidal vasculature, the resulting hypoxia triggers proangiogenic signals, which foster choroidal neovascularization (wet AMD).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
47 readers on Mendeley
See more details