Treatment options in acute stroke are limited by a dearth of safe and effective regimens for recanalization of an occluded cerebrovascular tributary, as well as by the fact that patients present only after the occlusive event is established. We hypothesized that even if the site of major arterial occlusion is recanalized after stroke, microvascular thrombosis continues to occur at distal sites, reducing postischemic flow and contributing to ongoing neuronal death. To test this hypothesis, and to show that microvascular thrombosis occurs as an ongoing, dynamic process after the onset of stroke, we tested the effects of a potent antiplatelet agent given both before and after the onset of middle cerebral arterial (MCA) occlusion in a murine model of stroke. After 45 min of MCA occlusion and 23 h of reperfusion, fibrin accumulates in the ipsilateral cerebral hemisphere, based upon immunoblotting, and localizes to microvascular lumena, based upon immunostaining. In concordance with these data, there is a nearly threefold increase in the ipsilateral accumulation of 111In-labeled platelets in mice subjected to stroke compared with mice not subjected to stroke. When a novel inhibitor of the glycoprotein IIb/IIIa receptor (SDZ GPI 562) was administered immediately before MCA occlusion, platelet accumulation was reduced 48%, and fibrin accumulation was reduced by 47% by immunoblot densitometry. GPI 562 exhibited a dose-dependent reduction of cerebral infarct volumes measured by triphenyltetrazolium chloride staining, as well as improvement in postischemic cerebral blood flow, measured by laser doppler. GPI 562 caused a dose-dependent increase in tail vein bleeding time, but intracerebral hemorrhage (ICH) was not significantly increased at therapeutic doses; however, there was an increase in ICH at the highest doses tested. When given immediately after withdrawal of the MCA occluding suture, GPI 562 was shown to reduce cerebral infarct volumes by 70%. These data support the hypothesis that in ischemic regions of brain, microvascular thrombi continue to accumulate even after recanalization of the MCA, contributing to postischemic hypoperfusion and ongoing neuronal damage.
T F Choudhri, B L Hoh, H G Zerwes, C J Prestigiacomo, S C Kim, E S Connolly Jr, G Kottirsch, D J Pinsky
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 309 | 44 |
50 | 54 | |
Citation downloads | 60 | 0 |
Totals | 419 | 98 |
Total Views | 517 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.