S-nitrosothiol signaling reactions are argued to play key modulatory roles in mediating the actions of NOS in health and disease. A report by Palmer et al. in this issue of the JCI provides new insight into the in vivo biology of S-nitrosothiols (see the related article beginning on page 2592). The authors examine the chronic effects of exogenous nitrosothiol therapy and demonstrate that the commonly used antioxidant N-acetylcysteine (NAC) induces pulmonary arterial hypertension in mice. Importantly, the authors argue that the vascular pathology they observe in the lungs of these animals is functionally and morphologically equivalent to that observed in chronic hypoxia. These findings raise the concern that chronic NAC therapy may induce similar vascular pathology in patients.
Philip A. Marsden
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 197 | 35 |
49 | 18 | |
Figure | 102 | 1 |
Citation downloads | 55 | 0 |
Totals | 403 | 54 |
Total Views | 457 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.