Local anesthetics (LAs) block the generation and propagation of action potentials by interacting with specific sites of voltage-gated Na+ channels. LAs can also excite sensory neurons and be neurotoxic through mechanisms that are as yet undefined. Nonspecific cation channels of the transient receptor potential (TRP) channel family that are predominantly expressed by nociceptive sensory neurons render these neurons sensitive to a variety of insults. Here we demonstrated that the LA lidocaine activated TRP channel family receptors TRPV1 and, to a lesser extent, TRPA1 in rodent dorsal root ganglion sensory neurons as well as in HEK293t cells expressing TRPV1 or TRPA1. Lidocaine also induced a TRPV1-dependent release of calcitonin gene–related peptide (CGRP) from isolated skin and peripheral nerve. Lidocaine sensitivity of TRPV1 required segments of the putative vanilloid-binding domain within and adjacent to transmembrane domain 3, was diminished under phosphatidylinositol 4,5-bisphosphate depletion, and was abrogated by a point mutation at residue R701 in the proximal C-terminal TRP domain. These data identify TRPV1 and TRPA1 as putative key elements of LA-induced nociceptor excitation. This effect is sufficient to release CGRP, a key component of neurogenic inflammation, and warrants investigation into the role of TRPV1 and TRPA1 in LA-induced neurotoxicity.
Andreas Leffler, Michael J. Fischer, Dietlinde Rehner, Stephanie Kienel, Katrin Kistner, Susanne K. Sauer, Narender R. Gavva, Peter W. Reeh, Carla Nau
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 761 | 240 |
66 | 51 | |
Figure | 393 | 3 |
Table | 41 | 0 |
Supplemental data | 51 | 5 |
Citation downloads | 58 | 0 |
Totals | 1,370 | 299 |
Total Views | 1,669 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.