Advertisement
Erratum Free access | 10.1172/JCI32573E2
Find articles by Heineke, J. in: JCI | PubMed | Google Scholar
Find articles by Auger-Messier, M. in: JCI | PubMed | Google Scholar
Find articles by Xu, J. in: JCI | PubMed | Google Scholar
Find articles by Oka, T. in: JCI | PubMed | Google Scholar
Find articles by Sargent, M. in: JCI | PubMed | Google Scholar
Find articles by York, A. in: JCI | PubMed | Google Scholar
Find articles by Klevitsky, R. in: JCI | PubMed | Google Scholar
Find articles by Vaikunth, S. in: JCI | PubMed | Google Scholar
Find articles by Duncan, S. in: JCI | PubMed | Google Scholar
Find articles by Aronow, B. in: JCI | PubMed | Google Scholar
Find articles by Robbins, J. in: JCI | PubMed | Google Scholar
Find articles by Crombleholme, T. in: JCI | PubMed | Google Scholar
Find articles by Molkentin, J. in: JCI | PubMed | Google Scholar
Published January 2, 2008 - More info
The transcription factor GATA4 is a critical regulator of cardiac gene expression, modulating cardiomyocyte differentiation and adaptive responses of the adult heart. We report what we believe to be a novel function for GATA4 in murine cardiomyocytes as a nodal regulator of cardiac angiogenesis. Conditional overexpression of GATA4 within adult cardiomyocytes increased myocardial capillary and small conducting vessel densities and increased coronary flow reserve and perfusion-dependent cardiac contractility. Coculture of HUVECs with either GATA4-expressing cardiomyocytes or with myocytes expressing a dominant-negative form of GATA4 enhanced or reduced HUVEC tube formation, respectively. Expression of GATA4 in skeletal muscle by adenoviral gene transfer enhanced capillary densities and hindlimb perfusion following femoral artery ablation. Deletion of Gata4 specifically from cardiomyocytes reduced myocardial capillary density and prevented pressure overload–augmented angiogenesis in vivo. GATA4 induced the angiogenic factor VEGF-A, directly binding the Vegf-A promoter and enhancing transcription. GATA4-overexpressing mice showed increased levels of cardiac VEGF-A, while Gata4-deleted mice demonstrated decreased VEGF-A levels. The induction of HUVEC tube formation in GATA4-overexpressing cocultured myocytes was blocked with a VEGF receptor antagonist. Pressure overload–induced dysfunction in Gata4-deleted hearts was partially rescued by adenoviral gene delivery of VEGF and angiopoietin-1. To our knowledge, these results demonstrate what is to our knowledge a previously unrecognized function for GATA4 as a regulator of cardiac angiogenesis through a nonhypoxic, load, and/or disease-responsive mechanism.
Joerg Heineke, Mannix Auger-Messier, Jian Xu, Toru Oka, Michelle A. Sargent, Allen York, Raisa Klevitsky, Sachin Vaikunth, Stephen A. Duncan, Bruce J. Aronow, Jeffrey Robbins, Timothy M. Crombleholm, Jeffery D. Molkentin
Original citation: J. Clin. Invest.117:3198-3210 (2007). doi:10.1172/JCI32573.
Citation for this erratum: J. Clin. Invest.118:387 (2008). doi:10.1172/JCI32573E2.
During the preparation of the manuscript, an error occurred in the wording of the final sentence of the abstract. The correct sentence appears below.
To our knowledge, these results demonstrate a previously unrecognized function for GATA4 as a regulator of cardiac angiogenesis through a nonhypoxic, load, and/or disease-responsive mechanism.
The JCI regrets the error.