Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vascular biology and bone formation: hints from HIF
Dwight A. Towler
Dwight A. Towler
Published June 1, 2007
Citation Information: J Clin Invest. 2007;117(6):1477-1480. https://doi.org/10.1172/JCI32518.
View: Text | PDF
Commentary

Vascular biology and bone formation: hints from HIF

  • Text
  • PDF
Abstract

In this issue of the JCI, Wang, Clemens, and colleagues demonstrate that hypoxia-inducible factor α (HIFα) signaling in bone-building osteoblasts is central to the coupling of angiogenesis and long bone development in mice (see the related article beginning on page 1616). They show that bone formation controlled by osteoblast HIFα signaling is not cell autonomous but is coupled to skeletal angiogenesis dependent upon VEGF signaling. Thus, strategies that promote HIFα signaling in osteoblasts may augment bone formation and accelerate fracture repair.

Authors

Dwight A. Towler

×

Figure 1

Working model of osteogenic-angiogenic coupling in trabecular bone.

Options: View larger image (or click on image) Download as PowerPoint
Working model of osteogenic-angiogenic coupling in trabecular bone.
Rece...
Recent data from multiple laboratories (16–24) have indicated that microvascular smooth muscle cells known as pericytes represent osteoprogenitors capable of bone formation when placed in the correct microenvironment. Pericytes appear to arise from a vessel-associated stem cell progenitor (mesoangioblast; refs. 20, 31, 32), and during the process of mesoderm growth and angiogenesis, this VEGFR2-expressing stem cell undergoes expansion (23, 31). In this issue of the JCI, Wang et al. (3) demonstrate that osteoblast HIFα subunits, transcriptional regulators of VEGF expression, represent rate-limiting components of osteogenic-angiogenic coupling and trabecular bone formation. Augmentation of osteoblast HIFα expression and bone formation was achieved by conditionally deleting Vhl, the gene encoding pVHL — the E3 ubiquitin ligase necessary for HIFα degradation. Bone formation was not cell autonomous — i.e., not dependent solely on osteoblast functions — but required VEGF-mediated paracrine signals in bone that stimulated angiogenesis. Since VEGF can expand VEGFR2-expressing mesoangioblast numbers during angiogenesis (33), this process may drive the increase in osteoblast numbers that promotes massive trabecular bone formation in the osteogenic marrow environment. PHD enzyme activity is also required for HIFα degradation, oxidatively “tagging” HIFα for recognition by pVHL. In addition to low oxygen levels (as shown here), mechanical stimuli, TNF-α, and reactive oxygen species can also upregulate HIFα expression (29). Strategies that augment osteoblast HIFα/VEGF signaling by selectively inhibiting skeletal PHD may increase bone formation and enhance fracture healing. BMSC, bone marrow stromal cell; CVC, calcifying vascular cell; GTF, general transcription factor; Pol II, RNA polymerase II; Ub, ubiquitin.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts