Lyso-phospholipids exert a major injurious effect on lung cell membranes during Acute Respiratory Distress Syndrome (ARDS), but the mechanisms leading to their in vivo generation are still unknown. Intratracheal administration of LPS to guinea pigs induced the secretion of type II secretory phospholipase A2 (sPLA2-II) accompanied by a marked increase in fatty acid and lyso-phosphatidylcholine (lyso-PC) levels in the bronchoalveolar lavage fluid (BALF). Administration of LY311727, a specific sPLA2-II inhibitor, reduced by 60% the mass of free fatty acid and lyso-PC content in BALF. Gas chromatography/mass spectrometry analysis revealed that palmitic acid and palmitoyl-2-lyso-PC were the predominant lipid derivatives released in BALF. A similar pattern was observed after the intratracheal administration of recombinant guinea pig (r-GP) sPLA2-II and was accompanied by a 50-60% loss of surfactant phospholipid content, suggesting that surfactant is a major lung target of sPLA2-II. In confirmation, r-GP sPLA2-II was able to hydrolyze surfactant phospholipids in vitro. This hydrolysis was inhibited by surfactant protein A (SP-A) through a direct and selective protein-protein interaction between SP-A and sPLA2-II. Hence, our study reports an in vivo direct causal relationship between sPLA2-II and early surfactant degradation and a new process of regulation for sPLA2-II activity. Anti-sPLA2-II strategy may represent a novel therapeutic approach in lung injury, such as ARDS.
L Arbibe, K Koumanov, D Vial, C Rougeot, G Faure, N Havet, S Longacre, B B Vargaftig, G Béréziat, D R Voelker, C Wolf, L Touqui
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 204 | 29 |
58 | 30 | |
Citation downloads | 44 | 0 |
Totals | 306 | 59 |
Total Views | 365 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.