Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells
Laure A. Moutouh-de Parseval, … , Helen Brady, Kyle Chan
Laure A. Moutouh-de Parseval, … , Helen Brady, Kyle Chan
Published December 6, 2007
Citation Information: J Clin Invest. 2008;118(1):248-258. https://doi.org/10.1172/JCI32322.
View: Text | PDF
Research Article Hematology

Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells

  • Text
  • PDF
Abstract

Sickle-cell disease (SCD) and β thalassemia constitute worldwide public health problems. New therapies, including hydroxyurea, have attempted to augment the synthesis of fetal hemoglobin (HbF) and improve current treatment. Lenalidomide and pomalidomide are members of a class of immunomodulators used as anticancer agents. Because clinical trials have demonstrated that lenalidomide reduces or eliminates the need for transfusions in some patients with disrupted blood cell production, we investigated the effects of lenalidomide and pomalidomide on erythropoiesis and hemoglobin synthesis. We used an in vitro erythropoiesis model derived from human CD34+ progenitor cells from normal and SCD donors. We found that both compounds slowed erythroid maturation, increased proliferation of immature erythroid cells, and regulated hemoglobin transcription, resulting in potent induction of HbF without the cytotoxicity associated with other HbF inducers. When combined with hydroxyurea, pomalidomide and, to a lesser extent, lenalidomide were found to have synergistic effects on HbF upregulation. Our results elucidate what we believe to be a new mechanism of action of pomalidomide and lenalidomide and support the hypothesis that pomalidomide, used alone or in combination with hydroxyurea, may improve erythropoiesis and increase the ratio of fetal to adult hemoglobin. These findings support the evaluation of pomalidomide as an innovative new therapy for β-hemoglobinopathies.

Authors

Laure A. Moutouh-de Parseval, Dominique Verhelle, Emilia Glezer, Kristen Jensen-Pergakes, Gregory D. Ferguson, Laura G. Corral, Christopher L. Morris, George Muller, Helen Brady, Kyle Chan

×
Options: View larger image (or click on image) Download as PowerPoint
Percentage of HbF+ cells in response to HbF inducers in CD34+-derived er...

Percentage of HbF+ cells in response to HbF inducers in CD34+-derived erythrocytes from 8 SCD patients


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts