Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease
Sanja Sever, … , Boris Nikolic, Jochen Reiser
Sanja Sever, … , Boris Nikolic, Jochen Reiser
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2095-2104. https://doi.org/10.1172/JCI32022.
View: Text | PDF
Research Article Article has an altmetric score of 17

Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease

  • Text
  • PDF
Abstract

Kidney podocytes and their foot processes maintain the ultrafiltration barrier and prevent urinary protein loss (proteinuria). Here we show that the GTPase dynamin is essential for podocyte function. During proteinuric kidney disease, induction of cytoplasmic cathepsin L leads to cleavage of dynamin at an evolutionary conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria. Dynamin mutants that lack the cathepsin L site, or render the cathepsin L site inaccessible through dynamin self-assembly, are resistant to cathepsin L cleavage. When delivered into mice, these mutants restored podocyte function and resolve proteinuria. Our study identifies dynamin as a critical regulator of renal permselectivity that is specifically targeted by proteolysis under pathological conditions.

Authors

Sanja Sever, Mehmet M. Altintas, Sharif R. Nankoe, Clemens C. Möller, David Ko, Changli Wei, Joel Henderson, Elizabetta C. del Re, Lianne Hsing, Ann Erickson, Clemens D. Cohen, Matthias Kretzler, Dontscho Kerjaschki, Alexander Rudensky, Boris Nikolic, Jochen Reiser

×

Figure 4

Effects of the nucleotide-bound and assembly state of dynamin on CatL cleavage in vitro and in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Effects of the nucleotide-bound and assembly state of dynamin on CatL cl...
(A) Domain structure of dynamin, corresponding antibodies, and amino acid sequence of predicted CatL cleavage sites. Note that the ELSGGA sequence is a highly conserved motif throughout the species. PH, pleckstrin homology domain; PRD, proline-arginine rich domain; Shi, dynamin homolog in Drosophila; Vsp1, dynamin homolog in yeast. (B) Schematic depiction of dynamin GTPase cycle. In its basal state, dynamin is a homotetramer. Self-assembly into higher-order structures such as rings or spirals can be promoted by GTPϒS and activates assembly-mediated GTP hydrolysis, which in turn drives disassembly. Dynamin’s middle domain is located inside the spiral. (C) Recombinant dyn1 (20 pmol) (CON) was mixed with CatL (1 pmol) (top panel), CatB (middle panel), or Furin (bottom panel). The reactions were performed at pH 7.0 under nonassembly conditions (200 mM NaCl). Where indicated, 200 μM GTP or 1 mM GTPϒS was present. Proteolytic products were detected by monoclonal anti-dynamin antibody against the GTPase domain. (D) Silver staining of recombinant dyn1 incubated with CatL at different pHs in the presence or absence of GTPϒS. (E) Western blot analysis using GTPase antibody of podocyte extracts infected with various dynamin mutants before or after addition of 100 μg/ml LPS for 20 hours. Note the appearance of a 40-kDa fragment (arrow). When indicated, podocytes were treated with 1 μM of the selective CatL inhibitor Z-FF-FMK for the duration of the LPS treatment. (F) Western blot analysis of subcellular fractionation of podocytes expressing dynWT for 24 hours after LPS treatment. Extracts were blotted using antibodies against the GTPase domain (N-terminal), GAP domain (C-terminal), LAMP-2, and tubulin.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 6 patents
Highlighted by 1 platforms
86 readers on Mendeley
1 readers on CiteULike
See more details