Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease
Sanja Sever, … , Boris Nikolic, Jochen Reiser
Sanja Sever, … , Boris Nikolic, Jochen Reiser
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2095-2104. https://doi.org/10.1172/JCI32022.
View: Text | PDF
Research Article

Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease

  • Text
  • PDF
Abstract

Kidney podocytes and their foot processes maintain the ultrafiltration barrier and prevent urinary protein loss (proteinuria). Here we show that the GTPase dynamin is essential for podocyte function. During proteinuric kidney disease, induction of cytoplasmic cathepsin L leads to cleavage of dynamin at an evolutionary conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria. Dynamin mutants that lack the cathepsin L site, or render the cathepsin L site inaccessible through dynamin self-assembly, are resistant to cathepsin L cleavage. When delivered into mice, these mutants restored podocyte function and resolve proteinuria. Our study identifies dynamin as a critical regulator of renal permselectivity that is specifically targeted by proteolysis under pathological conditions.

Authors

Sanja Sever, Mehmet M. Altintas, Sharif R. Nankoe, Clemens C. Möller, David Ko, Changli Wei, Joel Henderson, Elizabetta C. del Re, Lianne Hsing, Ann Erickson, Clemens D. Cohen, Matthias Kretzler, Dontscho Kerjaschki, Alexander Rudensky, Boris Nikolic, Jochen Reiser

×

Figure 2

Induction of cytoplasmic CatL protein and activity by LPS.

Options: View larger image (or click on image) Download as PowerPoint
Induction of cytoplasmic CatL protein and activity by LPS.
(A) Cultured ...
(A) Cultured podocytes were stained using anti–LAMP-2 antibodies and the BIOMOL CV-CatL/B activity detection kit. Control cells, cells treated with 50 μg/ml of LPS for 24 hours, and cells treated with LPS and 1 μM of the selective CatL inhibitor Z-FF-FMK are shown. (B) Labeling of cultured podocytes using anti-CatL antibody, untreated or after treatment with 50 μg/ml of LPS for 24 hours. (C) Labeling of cultured podocytes using anti-CatB antibody, untreated or after treatment with 50 μg/ml of LPS for 24 hours. (D) Schematic of CatL mRNA and resulting proteins. (E) Subcellular fractionation of podocytes in isotonic sucrose prior to and 24 hours after LPS treatment. Total proteins from the soluble (S) and the particulate (P) fractions were analyzed by Western blotting.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts