In this issue of the JCI, Vaisar et al. studied the proteome of HDL (see the related article beginning on page 746). They reveal, quite unexpectedly, that HDL is enriched in several proteins involved in the complement cascade, as well as in a variety of protease inhibitors, supporting the concept that HDL plays a role in innate immunity and in the regulation of proteolytic cascades involved in inflammatory and coagulation processes. The protein makeup of HDL also appears to be altered in patients with coronary artery disease. HDL proteomics is in its infancy, and preliminary findings will need to be confirmed using standardized approaches in larger clinical samples. However, this approach promises to better elucidate the relationship of HDL to atherosclerosis and its complications and could eventually help in the development of biomarkers to predict the outcome of interventions that alter HDL levels and functions.
Muredach P. Reilly, Alan R. Tall
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 305 | 25 |
64 | 21 | |
Table | 30 | 0 |
Supplemental data | 34 | 0 |
Citation downloads | 69 | 0 |
Totals | 502 | 46 |
Total Views | 548 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.