Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Local production of angiotensin II in the subfornical organ causes elevated drinking
Koji Sakai, … , Robin L. Davisson, Curt D. Sigmund
Koji Sakai, … , Robin L. Davisson, Curt D. Sigmund
Published April 2, 2007
Citation Information: J Clin Invest. 2007;117(4):1088-1095. https://doi.org/10.1172/JCI31242.
View: Text | PDF
Research Article Article has an altmetric score of 3

Local production of angiotensin II in the subfornical organ causes elevated drinking

  • Text
  • PDF
Abstract

The mechanism controlling cell-specific Ang II production in the brain remains unclear despite evidence supporting neuron-specific renin and glial- and neuronal-specific angiotensinogen (AGT) expression. We generated double-transgenic mice expressing human renin (hREN) from a neuron-specific promoter and human AGT (hAGT) from its own promoter (SRA mice) to emulate this expression. SRA mice exhibited an increase in water and salt intake and urinary volume, which were significantly reduced after chronic intracerebroventricular delivery of losartan. Ang II–like immunoreactivity was markedly increased in the subfornical organ (SFO). To further evaluate the physiological importance of de novo Ang II production specifically in the SFO, we utilized a transgenic mouse model expressing a floxed version of hAGT (hAGTflox), so that deletions could be induced with Cre recombinase. We targeted SFO-specific ablation of hAGTflox by microinjection of an adenovirus encoding Cre recombinase (AdCre). SRAflox mice exhibited a marked increase in drinking at baseline and a significant decrease in water intake after administration of AdCre/adenovirus encoding enhanced GFP (AdCre/AdEGFP), but not after administration of AdEGFP alone. This decrease only occurred when Cre recombinase correctly targeted the SFO and correlated with a loss of hAGT and angiotensin peptide immunostaining in the SFO. These data provide strong genetic evidence implicating de novo synthesis of Ang II in the SFO as an integral player in fluid homeostasis.

Authors

Koji Sakai, Khristofor Agassandian, Satoshi Morimoto, Puspha Sinnayah, Martin D. Cassell, Robin L. Davisson, Curt D. Sigmund

×

Figure 3

Localization of angiotensin peptide in the brain of SRA and SRAflox mice.

Options: View larger image (or click on image) Download as PowerPoint
Localization of angiotensin peptide in the brain of SRA and SRAflox mice...
Representative photomicrographs of immunostaining for Ang I/II peptide in the SFO by immunofluorescence (A–C) and immunoperoxidase (D and E) in nontransgenic control (A and D), SRA (B and E), and SRAflox (C) mice. n = 4 or more mice. Scale bars: 0.4 mm (A–C); 0.1 mm (D and E).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
45 readers on Mendeley
See more details