Increased insulin secretion and expansion of pancreatic β cell mass work together to maintain normal glucose levels when insulin resistance develops. Changes in glucose concentration have long been known to have profound effects upon the rates of insulin secretion and β cell mass, but various other agents can also cause changes, raising questions about which mechanisms are dominant. Evidence favoring a dominant role for glucose is provided by Terauchi et al. in this issue of the JCI (see the related article beginning on page 246). Mice haploinsufficient for β cell glucokinase (Gck) were unable to increase their β cell mass in response to insulin resistance produced by high-fat feeding. Gck is known to be the glucose sensor for glucose metabolism in β cells. The study also provides strong evidence that insulin receptor substrate 2 (Irs2), which is known to have major effects on β cell growth and survival, is a key downstream mediator of the effects of glucose found in this study.
Gordon C. Weir, Susan Bonner-Weir
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 264 | 58 |
51 | 21 | |
Figure | 45 | 1 |
Citation downloads | 47 | 0 |
Totals | 407 | 80 |
Total Views | 487 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.