Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The type III TGF-β receptor suppresses breast cancer progression
Mei Dong, … , Jeffrey R. Marks, Gerard C. Blobe
Mei Dong, … , Jeffrey R. Marks, Gerard C. Blobe
Published January 2, 2007
Citation Information: J Clin Invest. 2007;117(1):206-217. https://doi.org/10.1172/JCI29293.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 3

The type III TGF-β receptor suppresses breast cancer progression

  • Text
  • PDF
Abstract

The TGF-β signaling pathway has a complex role in regulating mammary carcinogenesis. Here we demonstrate that the type III TGF-β receptor (TβRIII, or betaglycan), a ubiquitously expressed TGF-β coreceptor, regulated breast cancer progression and metastasis. Most human breast cancers lost TβRIII expression, with loss of heterozygosity of the TGFBR3 gene locus correlating with decreased TβRIII expression. TβRIII expression decreased during breast cancer progression, and low TβRIII levels predicted decreased recurrence-free survival in breast cancer patients. Restoring TβRIII expression in breast cancer cells dramatically inhibited tumor invasiveness in vitro and tumor invasion, angiogenesis, and metastasis in vivo. TβRIII appeared to inhibit tumor invasion by undergoing ectodomain shedding and producing soluble TβRIII, which binds and sequesters TGF-β to decrease TGF-β signaling and reduce breast cancer cell invasion and tumor-induced angiogenesis. Our results indicate that loss of TβRIII through allelic imbalance is a frequent genetic event during human breast cancer development that increases metastatic potential.

Authors

Mei Dong, Tam How, Kellye C. Kirkbride, Kelly J. Gordon, Jason D. Lee, Nadine Hempel, Patrick Kelly, Benjamin J. Moeller, Jeffrey R. Marks, Gerard C. Blobe

×

Figure 7

Restoration of TβRIII expression inhibits Matrigel invasiveness of MDA-MB231 breast cancer cells.

Options: View larger image (or click on image) Download as PowerPoint
Restoration of TβRIII expression inhibits Matrigel invasiveness of MDA-M...
(A) MDA-MB231 cells were infected with equivalent amounts of adenoviral constructs carrying GFP, HA-tagged TβRIII, and a TβRIII mutant lacking the entire cytoplasmic domain (TβRIIIΔcyto). Expression of the transgenes was confirmed by Western blotting of cell lysate using anti-HA antibody. (B and C) Matrigel invasion assay. Adenovirally infected MDA-MB231 cells (75,000 cells) were seeded in a Matrigel-coated upper chamber and treated with TGF-β1 (15 pM) 2 hours later. Cell invasion through the Matrigel after 24 hours’ incubation was detected by H&E staining and quantitated. (D and E) Matrigel invasion assay was performed after resuspending MDA-MB231 cells in the conditioned media collected from pcDNA3.1-Neo–, TβRIII-, and sTβRIII-transfected COS-7 cells. Data are mean ± SEM, n = 3 in triplicate. **P < 0.01. (F) Detection of sTβRIII in media of MDA-MB231–TβRIII and 4T1-TβRIII cells by [125I]TGF-β1–binding crosslinking followed by immunoprecipitation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 5 patents
112 readers on Mendeley
See more details