Obesity is associated with chronic low-grade inflammation. Thus, at metabolically relevant sites, including adipose tissue and muscle, there is abnormal production of proinflammatory cytokines such as TNF-α. Here we demonstrate that eNOS expression was reduced, with a concomitant reduction of mitochondrial biogenesis and function, in white and brown adipose tissue and in the soleus muscle of 3 different animal models of obesity. The genetic deletion of TNF receptor 1 in obese mice restored eNOS expression and mitochondrial biogenesis in fat and muscle; this was associated with less body weight gain than in obese wild-type controls. Furthermore, TNF-α downregulated eNOS expression and mitochondrial biogenesis in cultured white and brown adipocytes and muscle satellite cells of mice. The NO donors DETA-NO and SNAP prevented the reduction of mitochondrial biogenesis observed with TNF-α. Our findings demonstrate that TNF-α impairs mitochondrial biogenesis and function in different tissues of obese rodents by downregulating eNOS expression and suggest a novel pathophysiological process that sustains obesity.
Alessandra Valerio, Annalisa Cardile, Valeria Cozzi, Renata Bracale, Laura Tedesco, Addolorata Pisconti, Letizia Palomba, Orazio Cantoni, Emilio Clementi, Salvador Moncada, Michele O. Carruba, Enzo Nisoli
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 662 | 172 |
86 | 44 | |
Figure | 262 | 12 |
Table | 44 | 0 |
Supplemental data | 36 | 3 |
Citation downloads | 68 | 0 |
Totals | 1,158 | 231 |
Total Views | 1,389 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.