Autoimmune diseases such as the diabetes that develops in NOD mice depend on immunologic recognition of specific autoantigens, but recognition can result in a pathogenic or protective T cell response. A study by Du et al. in this issue of the JCI demonstrates that TGF-β signaling by T cells recognizing the insulin peptide B:9–23 is essential for such protection and that this inhibitory cytokine functions in both a paracrine and an autocrine manner (see the related article beginning on page 1360). We propose that the insulin peptide B:9–23 and a conserved TCR motif form an “immunologic homunculus” underlying the relatively common targeting of insulin by T cells that, as demonstrated by the study of Du and coworkers, results in a protective T cell response, or diabetes, as shown by other investigators, for related T cell receptors.
Dirk Homann, George S. Eisenbarth
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 395 | 16 |
63 | 16 | |
Table | 35 | 0 |
Citation downloads | 68 | 0 |
Totals | 561 | 32 |
Total Views | 593 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.