Recent studies have shown that nicotine, a component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. While nicotine is not carcinogenic by itself, it has been shown to induce cell proliferation and angiogenesis. Here we find that mitogenic effects of nicotine in non–small cell lung cancers (NSCLCs) are analogous to those of growth factors and involve activation of Src, induction of Rb–Raf-1 interaction, and phosphorylation of Rb. Analysis of human NSCLC tumors show enhanced levels of Rb–Raf-1 complexes compared with adjacent normal tissue. The mitogenic effects of nicotine were mediated via the α7-nAChR subunit and resulted in enhanced recruitment of E2F1 and Raf-1 on proliferative promoters in NSCLC cell lines and human lung tumors. Nicotine stimulation of NSCLC cells caused dissociation of Rb from these promoters. Proliferative signaling via nicotinic acetylcholine receptors (nAChRs) required the scaffolding protein β-arrestin; ablation of β-arrestin or disruption of the Rb–Raf-1 interaction blocked nicotine-induced proliferation of NSCLCs. Additionally, suppression of β-arrestin also blocked activation of Src, suppressed levels of phosphorylated ERK, and abrogated Rb–Raf-1 binding in response to nicotine. It appears that nicotine induces cell proliferation by β-arrestin–mediated activation of the Src and Rb–Raf-1 pathways.
Piyali Dasgupta, Shipra Rastogi, Smitha Pillai, Dalia Ordonez-Ercan, Mark Morris, Eric Haura, Srikumar Chellappan
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 460 | 151 |
389 | 32 | |
Figure | 242 | 16 |
Citation downloads | 57 | 0 |
Totals | 1,148 | 199 |
Total Views | 1,347 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.