CTL-associated antigen 4 (CTLA-4) engagement negatively regulates T cell activation and function and promotes immune tolerance. However, it has been difficult to explore the biology of selective engagement of CTLA-4 in vivo because CTLA-4 shares its ligands, B7-1 and B7-2, with CD28. To address this issue, we developed a Tg mouse expressing a single-chain, membrane-bound anti–CTLA-4 Ab (scFv) on B cells. B and T cells developed normally and exhibited normal phenotype in the steady state and after activation in these mice. However, B cells from scFv Tg+ mice (scαCTLA4+) prevented T cell proliferation and cytokine production in mixed lymphocyte reactions. Additionally, mice treated with scαCTLA4+ B cells had decreased T cell–dependent B cell Ab production and class switching in vivo after antigen challenge. Furthermore, expression of this CTLA-4 agonist protected NOD mice from spontaneous autoimmune diabetes. Finally, this disease prevention occurred in Treg-deficient NOD.B7-1/B7-2 double-knockout mice, suggesting that the effect of the CTLA-4 agonist directly attenuates autoreactive T cell activation, not Treg activation. Together, results from this study demonstrate that selective ligation of CTLA-4 attenuates in vivo T cell responses, prevents development of autoimmunity, and represents a novel immunotherapeutic approach for the induction and maintenance of peripheral tolerance.
Brian T. Fife, Matthew D. Griffin, Abul K. Abbas, Richard M. Locksley, Jeffrey A. Bluestone
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 457 | 62 |
82 | 40 | |
Figure | 311 | 11 |
Citation downloads | 51 | 0 |
Totals | 901 | 113 |
Total Views | 1,014 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.