Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling
Koichiro Kuwahara, … , Joseph A. Hill, Eric N. Olson
Koichiro Kuwahara, … , Joseph A. Hill, Eric N. Olson
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3114-3126. https://doi.org/10.1172/JCI27702.
View: Text | PDF
Research Article Cardiology Article has an altmetric score of 4

TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling

  • Text
  • PDF
Abstract

The heart responds to injury and chronic pressure overload by pathologic growth and remodeling, which frequently result in heart failure and sudden death. Calcium-dependent signaling pathways promote cardiac growth and associated changes in gene expression in response to stress. The calcium/calmodulin-dependent phosphatase calcineurin, which signals to nuclear factor of activated T cells (NFAT) transcription factors, serves as a transducer of calcium signals and is sufficient and necessary for pathologic cardiac hypertrophy and remodeling. Transient receptor potential (TRP) proteins regulate cation entry into cells in response to a variety of signals, and in skeletal muscle, expression of TRP cation channel, subfamily C, member 3 (TRPC3) is increased in response to neurostimulation and calcineurin signaling. Here we show that TRPC6 was upregulated in mouse hearts in response to activated calcineurin and pressure overload, as well as in failing human hearts. Two conserved NFAT consensus sites in the promoter of the TRPC6 gene conferred responsiveness to cardiac stress. Cardiac-specific overexpression of TRPC6 in transgenic mice resulted in heightened sensitivity to stress, a propensity for lethal cardiac growth and heart failure, and an increase in NFAT-dependent expression of β–myosin heavy chain, a sensitive marker for pathologic hypertrophy. These findings implicate TRPC6 as a positive regulator of calcineurin-NFAT signaling and a key component of a calcium-dependent regulatory loop that drives pathologic cardiac remodeling.

Authors

Koichiro Kuwahara, Yanggan Wang, John McAnally, James A. Richardson, Rhonda Bassel-Duby, Joseph A. Hill, Eric N. Olson

×

Figure 4

Expression of TRPC6 in hearts of Tg mice.

Options: View larger image (or click on image) Download as PowerPoint
Expression of TRPC6 in hearts of Tg mice.
(A) Rat Trpc6 mRNA levels, sho...
(A) Rat Trpc6 mRNA levels, shown relative to Tg L8 mice and normalized by 18S RNA levels, were determined using RT-PCR. (B) Western blot analysis for TRPC6 and β-actin expression in hearts. (C) Relative TRPC6 protein expression in WT (assigned as 1.0) and TRPC6 Tg mice, determined by densitometry. (D) Immunocytochemistry of adult myocytes isolated from TRPC6 Tg L16 (12 wk) and WT littermates using TRPC6 antibody. Green, anti-TRPC6; red, anti–α-actinin. Magnification, ×400. (E) TRPC current was measured by electrophysiologic voltage-clamp in ventricular myocytes isolated from Tg L16 and WT hearts. Current-voltage relations revealed increased current density in Tg L16 myocytes, consistent with increased functional TRPC channel expression at the cell surface. Voltage ramp protocol imposed on cells is inset. (F) Mean values of peak TRPC current density recorded in Tg L16 versus WT myocytes. *P < 0.05. (G) Mean values of percent TRPC6 current increase on exposure to 10 nM ET-1. (H) Cytoplasmic (C) and nuclear (N) proteins immunoblotted with anti-NFATc3, anti-PCAF (nuclear marker), or anti-HSP90α/β (cytoplasmic marker). (I) RCAN1 (exon 4) mRNA levels were determined by real-time RT-PCR using RNA from hearts of 7- to 8-week-old WT, Tg L8, Tg L16, and Tg L23 mice. mRNA levels relative to RCAN1 mRNA in WT (assigned as 1.0) normalized by 18S RNA are shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
Highlighted by 1 platforms
157 readers on Mendeley
See more details