Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Targeting tumor-associated macrophages as a novel strategy against breast cancer
Yunping Luo, … , Ralph A. Reisfeld, Rong Xiang
Yunping Luo, … , Ralph A. Reisfeld, Rong Xiang
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2132-2141. https://doi.org/10.1172/JCI27648.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 9

Targeting tumor-associated macrophages as a novel strategy against breast cancer

  • Text
  • PDF
Abstract

Tumor-associated macrophages (TAMs) are associated with tumor progression and metastasis. Here, we demonstrate for the first time that legumain, a member of the asparaginyl endopeptidase family functioning as a stress protein, overexpressed by TAMs, provides an ideal target molecule. In fact, a legumain-based DNA vaccine served as a tool to prove this point, as it induced a robust CD8+ T cell response against TAMs, which dramatically reduced their density in tumor tissues and resulted in a marked decrease in proangiogenic factors released by TAMs such as TGF-β, TNF-α, MMP-9, and VEGF. This, in turn, led to a suppression of both tumor angiogenesis and tumor growth and metastasis. Importantly, the success of this strategy was demonstrated in murine models of metastatic breast, colon, and non–small cell lung cancers, where 75% of vaccinated mice survived lethal tumor cell challenges and 62% were completely free of metastases. In conclusion, decreasing the number of TAMs in the tumor stroma effectively altered the tumor microenvironment involved in tumor angiogenesis and progression to markedly suppress tumor growth and metastasis. Gaining better insights into the mechanisms required for an effective intervention in tumor growth and metastasis may ultimately lead to new therapeutic targets and better anticancer strategies.

Authors

Yunping Luo, He Zhou, Jörg Krueger, Charles Kaplan, Sung-Hyung Lee, Carrie Dolman, Dorothy Markowitz, Wenyuan Wu, Cheng Liu, Ralph A. Reisfeld, Rong Xiang

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 1,931 76
PDF 110 37
Figure 344 8
Supplemental data 38 1
Citation downloads 76 0
Totals 2,499 122
Total Views 2,621
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 12 patents
385 readers on Mendeley
See more details