Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Role of Endothelin-1/Endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice.
H Yanagisawa, … , D E Clouthier, M Yanagisawa
H Yanagisawa, … , D E Clouthier, M Yanagisawa
Published July 1, 1998
Citation Information: J Clin Invest. 1998;102(1):22-33. https://doi.org/10.1172/JCI2698.
View: Text | PDF
Research Article

Role of Endothelin-1/Endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice.

  • Text
  • PDF
Abstract

The intercellular signaling mediated by endothelins and their G protein-coupled receptors has recently been shown to be essential for the normal embryonic development of subsets of neural crest cell derivatives. Endothelin-1 (ET-1) is proteolytically generated from its inactive precursor by endothelin-converting enzyme-1 (ECE-1) and acts on the endothelin-A (ETA) receptor. Genetic disruption of this ET-1/ECE-1/ETA pathway results in defects in branchial arch- derived craniofacial tissues, as well as defects in cardiac outflow and great vessel structures, which are derived from cephalic (cardiac) neural crest. In this study, in situ hybridization of ETA-/- and ECE-1(-)/- embryos with a cardiac neural crest marker, cellular retinoic acid-binding protein-1, shows that the migration of neural crest cells from the neural tube to cardiac outflow tract is not affected in these embryos. Immunostaining of an endothelial marker, platelet endothelial cell adhesion molecule CD-31, shows that the initial formation of the branchial arch arteries is not disturbed in ETA-/- or ECE-1(-)/- embryos. To visualize the subsequent patterning of arch vessels in detail, we generated ETA-/- or ECE-1(-)/- embryos that expressed an SM22alpha-lacZ marker transgene in arterial smooth muscle cells. Wholemount X-gal staining of these mutant embryos reveals that the abnormal regression and persistence of specific arch arteries results in disturbance of asymmetrical remodeling of the arch arteries. These defects include abnormal regression of arch arteries 4 and 6, enlargement of arch artery 3, and abnormal persistence of the bilateral ductus caroticus and right dorsal aorta. These abnormalities eventually lead to various types of great vessel malformations highly similar to those seen in neural crest-ablated chick embryos and human congenital cardiac defects. This study demonstrates that ET-1/ETA-mediated signaling plays an essential role in a complex process of aortic arch patterning by affecting the postmigratory cardiac neural crest cell development.

Authors

H Yanagisawa, R E Hammer, J A Richardson, S C Williams, D E Clouthier, M Yanagisawa

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 404 51
PDF 59 31
Citation downloads 67 0
Totals 530 82
Total Views 612
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts