Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Kidney stone disease
Fredric L. Coe, … , Andrew Evan, Elaine Worcester
Fredric L. Coe, … , Andrew Evan, Elaine Worcester
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2598-2608. https://doi.org/10.1172/JCI26662.
View: Text | PDF
Science in Medicine

Kidney stone disease

  • Text
  • PDF
Abstract

About 5% of American women and 12% of men will develop a kidney stone at some time in their life, and prevalence has been rising in both sexes. Approximately 80% of stones are composed of calcium oxalate (CaOx) and calcium phosphate (CaP); 10% of struvite (magnesium ammonium phosphate produced during infection with bacteria that possess the enzyme urease), 9% of uric acid (UA); and the remaining 1% are composed of cystine or ammonium acid urate or are diagnosed as drug-related stones. Stones ultimately arise because of an unwanted phase change of these substances from liquid to solid state. Here we focus on the mechanisms of pathogenesis involved in CaOx, CaP, UA, and cystine stone formation, including recent developments in our understanding of related changes in human kidney tissue and of underlying genetic causes, in addition to current therapeutics.

Authors

Fredric L. Coe, Andrew Evan, Elaine Worcester

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Endoscopic and histological images from a brushite SF. (A) Papilla from ...
Endoscopic and histological images from a brushite SF. (A) Papilla from a brushite SF that was video recorded at the time of stone removal shows depressions (arrows) near the papillary tip and flattening, a phenomenon not seen in CaOx SFs. Like CaOx SFs, the papilla possessed sites of Randall plaque (arrowheads), though lesser in number. In addition, papillae possess sites of a yellowish crystalline deposit at the openings of Bellini ducts (indicated by the asterisk). These ducts were occasionally enlarged and filled with a crystalline material that protruded from the duct (inset, arrow) that might serve as a site for stone attachment. (B) Deposits in the lumens of an individual inner medullary CD (arrow) and in an occasional nearby Henle loop are shown. The crystal deposits greatly expanded the lumen of these tubules, and cell injury to the degree of complete cell necrosis was found. A cuff of interstitial inflammation and fibrosis accompanied sites of intraluminal disposition. (C and D) A cortical sample from a normal human kidney (C) compared with that of a brushite SF (D) that reveals advanced glomerulosclerosis (arrows), moderate tubular atrophy, and interstitial fibrosis — changes not seen in CaOx SFs. Magnification: ×1,400 (B); ×1,000 (C and D). A and B reprinted with permission from Kidney International (92). C and D reprinted with permission from Urological Research (123).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts