Thrombotic thrombocytopenic purpura (TTP) is a life-threatening illness caused by deficiency of the vWF-cleaving protease ADAMTS13. Here we show that ADAMTS13-deficient mice are viable and exhibit normal survival, although vWF-mediated platelet-endothelial interactions are significantly prolonged. Introduction of the genetic background CASA/Rk (a mouse strain with elevated plasma vWF) resulted in the appearance of spontaneous thrombocytopenia in a subset of ADAMTS13-deficient mice and significantly decreased survival. Challenge of these mice with shigatoxin (derived from bacterial pathogens associated with the related human disease hemolytic uremic syndrome) resulted in a striking syndrome closely resembling human TTP. Surprisingly, no correlation was observed between plasma vWF level and severity of TTP, implying the existence of TTP-modifying genes distinct from vWF. These data suggest that microbe-derived toxins (or possibly other sources of endothelial injury), together with additional genetic susceptibility factors, are required to trigger TTP in the setting of ADAMTS13 deficiency.
David G. Motto, Anil K. Chauhan, Guojing Zhu, Jonathon Homeister, Colin B. Lamb, Karl C. Desch, Weirui Zhang, Han-Mou Tsai, Denisa D. Wagner, David Ginsburg