Intestinal glucagon-like peptide–1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9–39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state.
Claude Knauf, Patrice D. Cani, Christophe Perrin, Miguel A. Iglesias, Jean François Maury, Elodie Bernard, Fadilha Benhamed, Thierry Grémeaux, Daniel J. Drucker, C. Ronald Kahn, Jean Girard, Jean François Tanti, Nathalie M. Delzenne, Catherine Postic, Rémy Burcelin
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 862 | 130 |
91 | 48 | |
Figure | 414 | 32 |
Table | 45 | 0 |
Citation downloads | 69 | 0 |
Totals | 1,481 | 210 |
Total Views | 1,691 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.