Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y
Leigh D. Plant, … , Rick A. Kittles, Steve A.N. Goldstein
Leigh D. Plant, … , Rick A. Kittles, Steve A.N. Goldstein
Published February 1, 2006
Citation Information: J Clin Invest. 2006;116(2):430-435. https://doi.org/10.1172/JCI25618.
View: Text | PDF
Research Article Cardiology

A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y

  • Text
  • PDF
Abstract

Thousands die each year from sudden infant death syndrome (SIDS). Neither the cause nor basis for varied prevalence in different populations is understood. While 2 cases have been associated with mutations in type Vα, cardiac voltage-gated sodium channels (SCN5A), the “Back to Sleep” campaign has decreased SIDS prevalence, consistent with a role for environmental influences in disease pathogenesis. Here we studied SCN5A in African Americans. Three of 133 SIDS cases were homozygous for the variant S1103Y. Among controls, 120 of 1,056 were carriers of the heterozygous genotype, which was previously associated with increased risk for arrhythmia in adults. This suggests that infants with 2 copies of S1103Y have a 24-fold increased risk for SIDS. Variant Y1103 channels were found to operate normally under baseline conditions in vitro. As risk factors for SIDS include apnea and respiratory acidosis, Y1103 and wild-type channels were subjected to lowered intracellular pH. Only Y1103 channels gained abnormal function, demonstrating late reopenings suppressible by the drug mexiletine. The variant appeared to confer susceptibility to acidosis-induced arrhythmia, a gene-environment interaction. Overall, homozygous and rare heterozygous SCN5A missense variants were found in approximately 5% of cases. If our findings are replicated, prospective genetic testing of SIDS cases and screening with counseling for at-risk families warrant consideration.

Authors

Leigh D. Plant, Peter N. Bowers, Qianyong Liu, Thomas Morgan, Tingting Zhang, Matthew W. State, Weidong Chen, Rick A. Kittles, Steve A.N. Goldstein

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
A polymorphism in SCN5A encodes a variant cardiac sodium channel. (A) De...
A polymorphism in SCN5A encodes a variant cardiac sodium channel. (A) Denaturing HPLC waveform and direct sequencing of wild-type and S1103Y variant. The chromatogram shows the additional peak resulting from heteroduplex assembly of S1103 and Y1103 amplicons. Forward sequence of homozygous S1103 and Y1103 SIDS cases shows the C3308A change that leads to the substitution of serine (S) by tyrosine (Y). (B) Topology of the cardiac sodium channel encoded by SCN5A shows the cytoplasmic location of the S1103Y missense change (red), the 4 homologous membrane domains (DI–DIV), the pore-forming (P) loops, and the voltage-sensing segments (+).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts