Blood pressure abnormalities are thought to originate from intrinsic changes in the kidney, a concept that has been largely unchallenged for more than 4 decades. However, recent molecular, cellular, and transgenic mouse studies support an alternative hypothesis: primary abnormalities in vascular cell function can also directly cause abnormalities of blood pressure. In this issue of the JCI, Crowley and coworkers describe the application of an elegant cross-renal transplant model to type 1A angiotensin (AT1A) receptor–deficient mice and their wild-type littermates to explore the relative contributions of renal and extrarenal tissues to the low blood pressure seen in the AT1A receptor–deficient animals. Their studies further support the emerging paradigm that primary abnormalities of the vasculature can make unique, nonredundant contributions to blood pressure regulation; the findings have potentially important implications for the ways we diagnose and treat blood pressure diseases in humans.
Michael E. Mendelsohn
Mouse models of vascular contractile dysfunction and hypertension