Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs
Sarah E. Allan, … , Maria Grazia Roncarolo, Megan K. Levings
Sarah E. Allan, … , Maria Grazia Roncarolo, Megan K. Levings
Published November 1, 2005
Citation Information: J Clin Invest. 2005;115(11):3276-3284. https://doi.org/10.1172/JCI24685.
View: Text | PDF
Research Article Immunology Article has an altmetric score of 6

The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs

  • Text
  • PDF
Abstract

Little is known about the molecules that control the development and function of CD4+CD25+ Tregs. Recently, it was shown that the transcription factor FOXP3 is necessary and sufficient for the generation of CD4+CD25+ Tregs in mice. We investigated the capacity of FOXP3 to drive the generation of suppressive CD4+CD25+ Tregs in humans. Surprisingly, although ectopic expression of FOXP3 in human CD4+ T cells resulted in induction of hyporesponsiveness and suppression of IL-2 production, it did not lead to acquisition of significant suppressor activity in vitro. Similarly, ectopic expression of FOXP3Δ2, an isoform found in human CD4+CD25+ Tregs that lacks exon 2, also failed to induce the development of suppressor T cells. Moreover, when FOXP3 and FOXP3Δ2 were simultaneously overexpressed, although the expression of several Treg-associated cell surface markers was significantly increased, only a modest suppressive activity was induced. These data indicate that in humans, overexpression of FOXP3 alone or together with FOXP3Δ2 is not an effective method to generate potent suppressor T cells in vitro and suggest that factors in addition to FOXP3 are required during the process of activation and/or differentiation for the development of bona fide Tregs.

Authors

Sarah E. Allan, Laura Passerini, Rosa Bacchetta, Natasha Crellin, Minyue Dai, Paul C. Orban, Steven F. Ziegler, Maria Grazia Roncarolo, Megan K. Levings

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 935 100
PDF 88 32
Figure 450 10
Citation downloads 78 0
Totals 1,551 142
Total Views 1,693
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 7 patents
183 readers on Mendeley
See more details