Mucoid, mucA mutant Pseudomonas aeruginosa cause chronic lung infections in cystic fibrosis (CF) patients and are refractory to phagocytosis and antibiotics. Here we show that mucoid bacteria perish during anaerobic exposure to 15 mM nitrite (NO2–) at pH 6.5, which mimics CF airway mucus. Killing required a pH lower than 7, implicating formation of nitrous acid (HNO2) and NO, that adds NO equivalents to cellular molecules. Eighty-seven percent of CF isolates possessed mucA mutations and were killed by HNO2 (3-log reduction in 4 days). Furthermore, antibiotic-resistant strains determined were also equally sensitive to HNO2. More importantly, HNO2 killed mucoid bacteria (a) in anaerobic biofilms; (b) in vitro in ultrasupernatants of airway secretions derived from explanted CF patient lungs; and (c) in mouse lungs in vivo in a pH-dependent fashion, with no organisms remaining after daily exposure to HNO2 for 16 days. HNO2 at these levels of acidity and NO2– also had no adverse effects on cultured human airway epithelia in vitro. In summary, selective killing by HNO2 may provide novel insights into the important clinical goal of eradicating mucoid P. aeruginosa from the CF airways.
Sang Sun Yoon, Ray Coakley, Gee W. Lau, Sergei V. Lymar, Benjamin Gaston, Ahmet C. Karabulut, Robert F. Hennigan, Sung-Hei Hwang, Garry Buettner, Michael J. Schurr, Joel E. Mortensen, Jane L. Burns, David Speert, Richard C. Boucher, Daniel J. Hassett
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 622 | 53 |
123 | 24 | |
Figure | 475 | 13 |
Table | 102 | 0 |
Supplemental data | 50 | 2 |
Citation downloads | 76 | 0 |
Totals | 1,448 | 92 |
Total Views | 1,540 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.