Every cell in the body expresses a set of proteins designed to trigger permeabilization of the mitochondria and cell death. Inactivation or inappropriate triggering of these pathways is increasingly recognized as a contributor to human disease. A study in this issue of the JCI demonstrates that IL-6 exerts its protective effect against the development of lung injury following exposure of mice to 95% O2 by increasing the expression of a Bcl-2–related protein, A1. This protein acts to prevent mitochondrial membrane permeabilization and cell death following exposure to hyperoxia. The data in this study lend support to the hypothesis that inappropriate triggering of cell-death pathways may contribute to the development of hyperoxic pulmonary edema, lung injury, and respiratory failure.
G.R. Scott Budinger, Jacob I. Sznajder
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 229 | 16 |
57 | 19 | |
Figure | 40 | 1 |
Citation downloads | 55 | 0 |
Totals | 381 | 36 |
Total Views | 417 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.