Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Defining smooth muscle cells and smooth muscle injury
William M. Mahoney Jr., Stephen M. Schwartz
William M. Mahoney Jr., Stephen M. Schwartz
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):221-224. https://doi.org/10.1172/JCI24272.
View: Text | PDF
Commentary

Defining smooth muscle cells and smooth muscle injury

  • Text
  • PDF
Abstract

For 3 decades, terms such as synthetic phenotype and contractile phenotype have been used to imply the existence of a specific mechanism for smooth muscle cell (SMC) responses to injury. In this issue of the JCI, Hendrix et al. offer a far more precise approach to examining the mechanisms of SMC responses to injury, focused not on general changes in phenotype but on effects of injury on a single promoter element, the CArG [CC(A/T)6GG] box, in a single gene encoding smooth muscle (SM) α-actin. Since CArG box structures are present in some, but not all, SMC genes, these data suggest that we may be progressing toward establishing a systematic, molecular classification of both SMC subsets and the response of SMCs to different injuries.

Authors

William M. Mahoney Jr., Stephen M. Schwartz

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
The diversity of vascular SM. Within the vasculature, the term smooth mu...
The diversity of vascular SM. Within the vasculature, the term smooth muscle cell is used to include any connective tissue cell that forms a coating around the endothelial tubes. These cells may have many different phenotypes, ranging from the typical muscular artery SMC, characterized by a dense filamentous network made of SMC-specific proteins, to cells with much less definitive phenotypes, such as the glomerular mesangial cell and the intralaminar cell of the internal mammary artery, which look more like fibrocytes and lack SMC-specific proteins. Recently, we have begun to realize that SM-like cells may even arise from endothelial cells or circulating precursors. The diversity of the promoter structure described in Figure 1, as well as the presence of non-CArG box promoters in other SMC-restricted genes, may reflect the diverse responses to injury required of the cells making up the vessel wall.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts