Defective uptake of glucose into muscle and fat cells, or insulin resistance, is a central feature of obesity and type 2 diabetes. As we brace ourselves for the diabetes epidemic, it is reassuring to know that real progress is being made in defining the molecular biology of how insulin stimulates glucose uptake and what goes awry in obesity and type 2 diabetes. An understanding of the molecular determinants of insulin-stimulated glucose transport has been one of the holy grails of hormone action research. A major breakthrough was the discovery that insulin stimulates the translocation of a specific glucose transport protein, GLUT4, from intracellular vesicles to the cell surface. Elucidating how this process is regulated has remained a challenge because it represents a convergence of 2 disparate and complex fields of research — namely, vesicle transport and signal transduction. A study reported in this issue of the JCI using mice lacking Munc18c, one of the vesicle-trafficking proteins involved in GLUT4 translocation, has provided new insights into the signaling/trafficking intersection that controls insulin-stimulated GLUT4 movement.
David E. James
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 448 | 21 |
100 | 15 | |
Figure | 143 | 1 |
Citation downloads | 70 | 0 |
Totals | 761 | 37 |
Total Views | 798 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.