We have generated mice that carry a neuron-specific leptin receptor (LEPR) transgene whose expression is driven by the rat synapsin I promoter synapsin–LEPR B (SYN-LEPR-B). We have also generated mice that are compound hemizygotes for the transgenes SYN-LEPR-B and neuron-specific enolase–LEPR B (NSE-LEPR-B). We observed a degree of correction in db/db mice that are hemizygous (Syn db/db) and homozygous (Syn/Syn db/db) for the SYN-LEPR-B transgene similar to that previously reported for the NSE-LEPR-B transgene. We also show complete correction of the obesity and related phenotypes of db/db mice that are hemizygous for both NSE-LEPR-B and SYN-LEPR-B transgenes (Nse+Syn db/db). Body composition, insulin sensitivity, and cold tolerance were completely normalized in Nse+Syn db/db mice at 12 weeks of age compared with lean controls. In situ hybridization for LEPR B isoform expression in Nse+Syn db/db mice showed robust expression in the energy homeostasis–relevant regions of the hypothalamus. Expression of 3 neuropeptide genes, agouti-related peptide (Agrp), neuropeptide Y (Npy), and proopiomelanocortin (Pomc), was fully normalized in dual transgenic db/db mice. The 2 transgenes in concert conferred normal fertility to male and female db/db mice. Male mice with partial peripheral deletion of Lepr, induced in the periweaning phase, did not show alterations in body composition or mass. In summary, we show that brain-specific leptin signaling is sufficient to reverse the obesity, diabetes, and infertility of db/db mice.
Carl de Luca, Timothy J. Kowalski, Yiying Zhang, Joel K. Elmquist, Charlotte Lee, Manfred W. Kilimann, Thomas Ludwig, Shun-Mei Liu, Streamson C. Chua Jr.
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 923 | 140 |
132 | 62 | |
Figure | 363 | 47 |
Table | 169 | 0 |
Supplemental data | 38 | 2 |
Citation downloads | 53 | 0 |
Totals | 1,678 | 251 |
Total Views | 1,929 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.