Coagulase-negative staphylococci, with the leading species Staphylococcus epidermidis, are the predominant cause of hospital-acquired infections. Treatment is especially difficult owing to biofilm formation and frequent antibiotic resistance. However, virulence mechanisms of these important opportunistic pathogens have remained poorly characterized. Here we demonstrate that S. epidermidis secretes poly-γ-DL-glutamic acid (PGA) to facilitate growth and survival in the human host. Importantly, PGA efficiently sheltered S. epidermidis from key components of innate host defense, namely antimicrobial peptides and neutrophil phagocytosis, and was indispensable for persistence during device-related infection. Furthermore, PGA protected S. epidermidis from high salt concentration, a key feature of its natural environment, the human skin. Notably, PGA was synthesized by all tested strains of S. epidermidis and a series of closely related coagulase-negative staphylococci, most of which are opportunistic pathogens. Our study presents important novel biological functions for PGA and indicates that PGA represents an excellent target for therapeutic maneuvers aimed at treating disease caused by S. epidermidis and related staphylococci.
Stanislava Kocianova, Cuong Vuong, Yufeng Yao, Jovanka M. Voyich, Elizabeth R. Fischer, Frank R. DeLeo, Michael Otto
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,006 | 186 |
84 | 32 | |
Figure | 237 | 8 |
Table | 86 | 0 |
Citation downloads | 70 | 0 |
Totals | 1,483 | 226 |
Total Views | 1,709 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.