Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Do DNA sequence variants in ABCA1 contribute to HDL cholesterol levels in the general population?
Päivi Pajukanta
Päivi Pajukanta
Published November 1, 2004
Citation Information: J Clin Invest. 2004;114(9):1244-1247. https://doi.org/10.1172/JCI23466.
View: Text | PDF
Commentary

Do DNA sequence variants in ABCA1 contribute to HDL cholesterol levels in the general population?

  • Text
  • PDF
Abstract

HDL has a key role in reverse cholesterol transport, mobilizing cholesterol from the peripheral tissues to liver. In this process, the ABC transporter A1 (ABCA1) protein controls the efflux of intracellular cholesterol to apoAI, the major apolipoprotein of HDL. Since ABCA1 mutations were discovered to cause Tangier disease, a rare recessive HDL deficiency, it has been speculated that sequence variants in ABCA1 might also contribute to variations in plasma HDL cholesterol levels in the general population. A new study provides genetic evidence supporting this hypothesis.

Authors

Päivi Pajukanta

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
A schematic overview of the role of the ABCA1 protein in HDL metabolism ...
A schematic overview of the role of the ABCA1 protein in HDL metabolism and RCT. In RCT, excess free cholesterol (FC) is removed from peripheral tissues and returned to the liver for excretion in the bile. The ABCA1 protein is crucial for the initial steps of this process, since it controls the efflux of intracellular cholesterol to lipid-poor apoAI, which is the major apolipoprotein of HDL. The other key molecules in RCT include LCAT and scavenger receptor class-B, type I (SR-BI). CE, cholesteryl ester.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts