The study of fungal regulatory networks is essential to the understanding of how these pathogens respond to host environmental signals with effective virulence-associated traits. In this study, a virulence-associated DEAD-box RNA helicase–encoding gene (VAD1) was isolated from a mutant defective in the virulence factor laccase. A Δvad1 mutant exhibited a profound reduction in virulence in a mouse model that was restored after reconstitution with WT VAD1. Loss of VAD1 resulted in upregulation of NOT1, a gene encoding a global repressor of transcription. NOT1 was found to act as an intermediary transcriptional repressor of laccase. Vad1 was located within macromolecular complexes that formed cytoplasmic granular bodies in mature cells and during infection of mouse brain. In addition, VAD1 was shown by in situ hybridization to be expressed in the brain of an AIDS patient coinfected with C. neoformans. To understand the role of VAD1 in virulence, a functional genomics approach was used to identify 3 additional virulence determinants dependent on VAD1: PCK1, TUF1, and MPF3, involved in gluconeogenesis, mitochondrial protein synthesis, and cell wall integrity, respectively. These data show that fungal virulence-associated genes are coordinately regulated and that an analysis of such transcriptomes allows for the identification of important new genes involved in the normal growth and virulence of fungal pathogens.
John Panepinto, Lide Liu, Jeanie Ramos, Xudong Zhu, Tibor Valyi-Nagy, Saliha Eksi, Jianmin Fu, H. Ari Jaffe, Brian Wickes, Peter R. Williamson
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 650 | 0 |
86 | 0 | |
Figure | 298 | 0 |
Supplemental data | 38 | 0 |
Citation downloads | 46 | 0 |
Totals | 1,118 | 0 |
Total Views | 1,118 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.